#include <FeedForwardNeuralNetwork.h>
Inheritance diagram for Teem::BackPropFeedForwardNeuralNetwork:

Use that way:
for i in inputs nn.setInput(i, inputValue); nn.step();Ishtar::Variable<bool> outputLayerRecursive; for i in outputs nn.setError(i, errorValue); nn.stepBackward();
Public Member Functions | |
| BackPropFeedForwardNeuralNetwork (size_t inputCount, size_t outputCount, const std::string &root) | |
| Constructor, create a feed forward neural network with online back-propagation with inputCount inputs and outputCount outputs. | |
| virtual | ~BackPropFeedForwardNeuralNetwork () |
| Destructor. | |
| virtual void | stepBackward () |
| Backpropagate the error on the weight. | |
| void | setError (size_t index, double val) |
| Set the desired output (used for back-propagation of error). | |
| void | setLearningRate (double rate) |
| Set the learning rate value. | |
| double | getLearningRate () |
| Get the learning rate value. | |
Static Protected Member Functions | |
| static double | TanhBackwardActivationFunction (double x, double b) |
| Tanh backward activation function. | |
Protected Attributes | |
| Ishtar::Variable< double > | learningRate |
| learning rate constant | |
| std::valarray< double > | error |
| desired output | |
| ActivationFunction | backwardActFunc |
| derivative of the activation function | |
|
std::vector< std::valarray< double > > | deltas |
| deltas (see backprop algorithm) | |
1.4.2