#include <FeedForwardNeuralNetwork.h>
Inheritance diagram for Teem::FeedForwardNeuralNetwork:

Public Member Functions | |
| FeedForwardNeuralNetwork (size_t inputCount, size_t outputCount, const std::string &root) | |
| Constructor, create a neural network with inputCount inputs and outputCount outputs. | |
| virtual | ~FeedForwardNeuralNetwork () |
| Destructor. | |
| virtual void | setInput (unsigned index, double val) |
| Set the input values to the neural network. | |
| virtual double | getInput (unsigned index) const |
| Return the input value. | |
| virtual unsigned | getInputCount () const |
| Returns the number of input. | |
| virtual double | getOutput (unsigned index) |
| Read the output values. | |
| virtual void | step () |
| Propagate the input values to the output through all the layers. | |
| size_t | layerNum () |
| Return the number of layers. | |
| size_t | layerSize (size_t layer) |
| Return the size of the nth layer. Layer 0 is the fist layer after input. | |
| size_t | inputNum () |
| Return the number of input. | |
| size_t | outputNum () |
| Return the number of output. | |
| void | setWeight (size_t toLayer, size_t from, size_t to, double w) |
| Set the weight of a particular synapse to a particular layer. | |
| double | getWeight (size_t toLayer, size_t from, size_t to) const |
| Get the value for a particular weight. | |
| void | setBiasWeight (size_t toLayer, size_t to, double w) |
| Set weight from bias to neuron. | |
| double | getBiasWeight (size_t toLayer, size_t to) const |
| Get weight from bias to neuron. | |
| virtual void | randomize (double from, double to) |
| Put random weights with uniform distribution. | |
Protected Types | |
| typedef double(* | ActivationFunction )(double x, double b) |
| Activation function y = g(x). | |
Static Protected Member Functions | |
| static double | TanhForwardActivationFunction (double x, double b) |
| Tanh activation function. | |
Protected Attributes | |
| size_t | inputCount |
| number of input | |
| size_t | outputCount |
| number of output | |
| size_t | layerCount |
| number of layer | |
| Ishtar::Variable< unsigned > | hiddenLayerCount |
| number of hidden layer | |
| std::vector< size_t > | layerSizes |
| size of layers | |
| Ishtar::Variable< double > | biasValue |
| value of the bias neuron | |
| Ishtar::Variable< std::string > | activationFunction |
| name of the activation function | |
| Ishtar::Variable< double > | activationFunctionParameter |
| parameter for the activation function | |
| std::vector< Matrix< double > > | weights |
| weight matrix for each layer | |
|
std::vector< std::valarray< double > > | biasWeights |
| weight from the bias to each layer | |
|
std::vector< std::valarray< double > > | activations |
| activation of each neuron | |
|
std::vector< std::valarray< double > > | outputs |
| output of each neuron | |
| std::valarray< double > | input |
| input vector | |
| ActivationFunction | forwardActFunc |
| pointer to activation function | |
Classes | |
| class | ActivationFunctor |
| Functor to compute activation function on std::valarray<double> unsing std::for_each. More... | |
|
|
Activation function y = g(x).
|
|
||||||||||||||||||||
|
Set the weight of a particular synapse to a particular layer. Using layer 0, synpases from input to layer 0 are set. |
1.4.2