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Abstract—This paper presents a multi-robot control system
that enables the robots to monitor dynamic populations of
individuals. In this work, the population’s state is modeled as
a geo-referenced graph, where individuals occupy nodes on the
graph and use edges to travel between nodes. At any given time
some fraction of the population may occupy each node. The
control system presented uses calculated transition probabilities
to dictate robot motion about the same graph. The system has
the following properties: 1) robot navigation is collision-free,
2) robots only require local information when calculating their
transition probabilities, and 3) the entire system dynamics are
provably stable in that over time the distribution of robots at
nodes will equal the distribution of individuals occupying the
nodes. Simulation results indicate that for a 100 node graph
occupied by 60 robots, the average difference between the steady
state robot node distribution and desired node distribution
was less than 0.01. Field test results with real quadcopters
demonstrate that the controller can be implemented on a real
system.

Index Terms—Multi-robot system, Controller, Distribution
Tracking, UAV Surveillance, Shark Tracking

I. INTRODUCTION

Persistent environmental monitoring is a common need
across a variety of applications. Examples include patrolling
an area to detect intruders, surveying a location for air quality
data, or monitoring animals in their natural habitat. Such
tasks can oftentimes be dangerous, mundane, and/or costly for
human beings, and are thus well suited for automation with
robots [1]. Accordingly, a recent field of research has emerged
around the use of multi-robot systems for environmental
monitoring [2].

This paper presents an algorithmic solution to the control
of a multi-robot system for monitoring a spatial population
distribution that is abstracted as a graph, where each node
represents a geo-referenced location where individuals of the
population being monitored may be located. The individuals
can move between nodes across edges of the graph, and the
distribution of individuals across nodes is dynamic. Proposed
is a decentralized collision-free stochastic controller that coor-
dinates multiple robots to provably match the expected robot’s
node visit likelihood with the population’s distribution of
individuals across the nodes.

(a) Simulation of multi-robot system
monitoring Fisherman’s Cove, CA

(b) Equivalent diagrammed graph
showing possible transitions

Fig. 1. Two depictions of graph abstraction for the multi-robot controller

To motivate this work, it is being applied to a fish moni-
toring application where nodes of a graph represent potential
locations of fish. This model motivates the goal of develop-
ing a stochastic controller for multi-robot distributions. An
example is illustrated in Fig. 1(a), where a graph is anchored
to a particular area off the California coast, in which fish
are known to aggregate. This graph can also be used as
a navigation map for quadcopters equipped with downward
facing cameras. The robots can fly between nodes and land
on an Autonomous Surface Vehicle (ASV), which is stationed
at the central node 0, for recharging. A similar stochastic
framework is leveraged here, and the contributions of this
work include:

• A decentralized, collision-free, stochastic control system
that matches a node’s robot visitation likelihood with the
proportion of the tracked population residing at the node.

• Hardware experiments performed with real quadcopters
demonstrating system feasibility.

This work differs from prior work in that the controller that
can track dynamic distributions. It also allows higher priority
nodes, (those with higher fractions of the distribution being
tracked,) to be visited at a frequency proportional to their
priority level. The distributions can be updated dynamically
and the controller can respond in real-time. Combined with the
benefits of being decentralized and producing collision-free
navigation, the proposed controller provides a novel approach
to a general multi-robot coordination problem.



II. CONTROL SYSTEM

A. Problem Definition

The problem can be described as coordinating n quad-
copters in the set Q = {q0, . . . , qn−1} that are restricted
to navigate along edges, and between nodes of a graph
G = (V,E). V is the set of nodes and E is the set of
edges. The state of a quadcopter xt(qi) at discrete time t
is associated with some node vj , such that xt(qi) = vj .
More generally, the state of all quadcopters is defined as
Xt(Q) = [xt(q0) . . . xt(qn−1)] where Xt(Q) ∈ V . The set
of nodes that are occupied by quadcopters is denoted as Vocc

To further define the problem, the likelihood that a robot
occupies any particular node vj ∈ V at time t is pj,t, where∑

j pj,t = 1 for all t. Each node vj also has a time varying
fraction pj,des,t of the population of individuals being tracked
by the quadcopters such that

∑
j pj,des,t = 1 for all t. The

goal of the controller is determine robot motion such that
pj,des,t = pj,t for all t.

Also navigating the nodes of G are m ASVs in the set
A = {a0, . . . , am−1}. At periodic intervals, quadcopters must
visit a node occupied by an ASV to land and recharge. That is,
there must exist some time step tr within the recharge period
Tr where each quadcopter qi is collocated with an ASV al
at some vertex vk. Specifically xtr (qi) = xtr (al) = vk. For
work done in the remainder of this paper, each ASV will be
stationary and reside at a single node.

If at every time step t, any quadcopter qi chooses an action
ui,t : xt−1(qi) −→ xt(qi), and the action set for all quadcopters
at time t is Ut = {u0,t..un,t}, then the problem statement can
be formulated as follows:

minimize
Ut

tmax∑
t=0

|G|∑
j=0

pj,t,des − pj,t(Xt(Q), Ut)

subject to Xt(Q) ∈ V ∀t
∃tr ∈ Tr | xtr (qi) = xtr (al) ∀i
(xt−1(qi)→ xt(qi)) ∈ E ∀t, ∀i

The constraints state that 1) all quadcopters must reside on
nodes during the discrete time steps, 2) there exists some time
step within the recharge period at which each quadcopter is
on an ASV, and 3) quadcopters must move only along edges.

B. Graph Construction

For this study, the nodes in V are generated by cluster-
ing geo-referenced positions from a historical data of fish
population activity [3]. Methods such as k-means clustering
were used to extract ideal locations for nodes. Other graph
extraction algorithms can also be used.

Once the nodes are generated, directed edges are added to
connect all nodes in V sequentially to create a uni-directional
cyclic tour. Various TSP methods can be used to generate this
tour. Since the tour is uni-directional, collision negotiations
only occur between adjacent quadcopters, making the collision
checking local and decentralized.

C. Motion Controller

To determine how quadcopters navigate along the tour, a
stochastic motion controller that requires minimal run time
and communication requirements is proposed. This controller
specifies the transition probability τj+1,j,t at every time step
t such that in real time operations, any quadcopter qi located
at vj will randomly select to either stay at vj or navigate to
the next edge connected node vj+1 with likelihood τj+1,j,t.
Within this context, the control action ui,t uses a uniform
sampling function rand() ∈ [0, 1] to determine the next node
to visit:

ui,t =

{
xt−1(qi) −→ xt(qi) = vj+1 if rand() < τj+1,j,t

xt−1(qi) −→ xt(qi) = vj else
(1)

These transition probabilities can be encapsulated in a
transition matrix Rt, where the jth row and kth column
element in Rt is denoted as τj,k,t. Then, given the current
distribution of quadcopters pt = [p0,t . . . p|V |−1,t]

T , the quad-
copter distribution update can then be described by:

pt+1 = Rtpt (2)

Thus, the goal is to set the elements τj,k,t of Rt such
that pt converges to the desired distribution pdes,t =
[p0,des,t . . . p|V |−1,des,t]

T over time. The following values for
the elements of Rt are proposed:

τj,j,t =


1 if vj+1 ∈ Vocc
τstay− else if vj−1 ∈ Vocc
τstay+ else

τj+1,j,t =


0 if vj+1 ∈ Vocc
τmove− else if vj−1 ∈ Vocc
τmove+ else

(3)

In Eq. (3), τj,j,t determines the likelihood of staying at node
vj , while τj+1,j,t determines the likelihood of moving from
vj to the next node of a tour vj+1. Since a quadcopter must
either stay or move on, then τj,j,t + τj+1,j,t=1.

To eliminate the possibility of collisions, both the likelihood
of staying at current node vj is set to 1, and the likelihood
of transitioning to the next node vj+1 is set to 0, if vj+1 is
occupied, (i.e. vj+1 ∈ Vocc).

Equations (4)-(7) provide the transition probabilities for
cases where the next node on a tour is not occupied and can
be transitioned to. These transition probabilities are functions
of individual node errors ej,t = pdes,j,t − pj,t and constant
proportional control gains Ka and Kb.

τstay− =

[
1− pj+1,t +

Kaej,t
pj,t

+
Kb(ej−1,t−ej+1,t)

pj−1,t(pj,t)

]
1− pj+1,t

(4)

τstay+ =

[
1− p(j+1),t +

Kaej,t
pj,t

]
1− p(j+1),t

(5)



τmove− =
−
(

Kaej,t
pj,t

+
Kb(ej−1,t−ej+1,t)

pj−1,t(pj,t)

)
1− pj+1,t

(6)

τmove+ =
−Kaej,t

pj,t(1− pj+1,t)
(7)

As shown in in Eq. (3), if the next node is not occupied,
the controller next considers whether or not the previous node
vj−1 is occupied, (i.e. vj−1 ∈ Vocc). If it is, the controller
uses proportional control on node density errors for nodes
vj−1, vj , vj+1 to determine the likelihood of staying versus
moving on, (Eq. (4) and (6)). This ensures that quadcopters
at the previous node vj−1 don’t get stuck at that node when
there is less there to observe, (e.g. pj−1,des is low).

If the previous node is not occupied, a proportional con-
troller using error associated with the current node vj is used
to set the transition probability, (Eq. (5) and (7)).

Ideally, the individual node errors will all decay to zero
over time, such that for all nodes the likelihood of robots
visiting a node matches the fraction of individuals being
monitored visiting that node. It can be proved, (outside the
scope of this abstract), that setting the control gains Ka and
Kc appropriately will lead to stable error dynamics that decay
errors to zero over time.

A few notes on the transition probability calculations. First,
quadcopters only need to know information about previous,
current, and next nodes: ej−1,t, ej,t, ej+1,t, allowing the
system to be decentralized. Second, they ensure collision-free
navigation by setting likelihoods of transitioning to occupied
nodes to 0. Third, the desired distribution pdes,t can be
estimated and initialized with prior knowledge (i.e. known
population migratory behavior) or possibly estimated in real-
time as it changes, thereby enabling the tracking of dynamic
distributions. Fourth, the calculations in equations (3)-(7)
require relatively insignificant computational power and can
be accomplished in real-time. Finally, the following theorem
can be proven, although outside the scope of this abstract:

Theorem II.1. The error dynamics for et will be stable for
gain values of 0 < Ka < 1 and 0 < Kb <

1
2 .

III. SIMULATION TESTS

All simulation tests were written in MATLAB. To test
the controller, simulations were run on graphs with random
desired tracking distributions. The number of nodes in the
graph were varied between values of 5, 10, 20, 40, 60, 80,
and 100. The number of quadcopters was set to values of
1, 10, 20, 30, 40, 50, and 60 percent of the nodes. For
each node/quadcopter number combination, 100 trials were
conducted and performance was evaluated as the average error
from Eq. (3) across all nodes, across all 100 trials.

As shown in Fig. 2 the error values predominantly falls
within < 0.05. The error plot indicates that the controller
converges to the desired distribution with some steady state
error. Error increases as the percentage of nodes occupied
increase and simultaneously the number of nodes decrease.

Fig. 2. Average absolute error as a function of number of nodes and robots.

(a) 2D trajectory of two recharge
node trial

(b) 3D trajectory of two recharge
node trial

Fig. 3. Trajectories of hardware trials conducted at Linde Field at Harvey
Mudd College.

IV. FIELD TESTS

Physical experiments were conducted with three modified
3DR Solo quadcopters running OpenSolo. Flight times range
from 10 to 20 minutes. The flight controller of the 3DR
Solos were upgraded from a Pixhawk 2.1 Black Cube to
a Pixhawk 2.1 Green Cube flashed with Arducopter v3.5.
Autonomous functionality was programmed with Dronekit.
The script was run on a remote computer that connected to
each quadcopter through a designated WiFi link. For these
preliminary tests, the system controller was centralized for
ease of implementation.

Fig. 3 depicts the trajectories logged during some of the
hardware trials. As shown in the figures, theses trials validated
the ability for the controller to coordinate the collision-free
motion of multiple quadcopters around the graph.
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