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Abstract— We propose a cascaded real time dynamic pro-
gramming based algorithm. The first block searches obstacle-
free least distance path and the second block performs velocity
optimization on that path to either achieve minimum energy
or minimum time motion while generating dynamically feasible
trajectories. The algorithm can be deployed to multiple UAVs, in
a distributed fashion where UAVs have to cooperatively work
towards a common goal. The cascaded motion planner was
first tested in simulink based model, and after that software
in the loop simulations were performed. The simulation tests
confirmed the effectiveness and applicability of the method.

I. INTRODUCTION

UAVs are being considered for their potential of pay-
load delivery in an efficient and quick manner. In 2016
Amazon prime air performed the first drone-based delivery
in Cambridge England [1]. In cases where UAVs have to
reach the destination location as early as possible such
as while delivering medical samples or organs, the most
important factor is the reduction of journey time. In cases
where time factor is not important, we would like to save
energy consumption for the journey [2]. In all cases, we
need to avoid obstacles and select the shortest euclidean
distance. Selection of shortest obstacle-free path in real-
time is a challenging task. Modern computational platforms
have improved in efficiency and are reduced in size to be
able to be attached on-board of such UAVs. The improved
capability of the computational platforms made it possible
to use algorithms such as Real-time dynamic programming
for the optimization purposes in real-time.

II. RELEVANT WORK

Researchers have focused on multi-rotor motion in clut-
tered environments. In [3] developed a method to find time-
based obstacle free polynomials in real-time. Study in [4]
focused on a real-time trajectory re-planning approach to
deal with dynamic environment while keeping the multi-rotor
on a global trajectory. In [5] first safe flight corridors were
calculated and then the safe flight corridors were used to
continuously plan the motion of the quad-rotor. In [6] the
trajectories are generated, not only considering the obstacle
free path, but also taking into account for the time and
control efforts. In [7], the focus was on dealing with motion
uncertainty, field of view constraints in dynamic obstacles.
In [8], the path searching method finds kinodynamically
feasible, minimum time trajectories. In [9], authors presented
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Fig. 1. Process flow diagram showing the DP sweep. Current position of
the drone is taken by algorithm and a grid of points is created. Transition
costs are calculated for each possible decision. The transition costs towards
the node which is within the obstacle circle gets more cost value. Finally
the minimum cost path is traced back to the drone and the selected path is
implemented

collision avoidance algorithm for multiple UAVs in the
communication range. In this method, altitude difference
was used to ensure collision avoidance. In [10], MDP based
method is used to find obstacle free trajectory for a fixed
winged UAV. The trajectories were modified to make them
dynamically feasible using differential flatness property. Sim-
ilar to [10], we also propose a Dynamic Programming (DP)
based approach for searching the feasible path, but differently
to [10], our grid based search approach is valid for holonomic
systems. In our method we discretize the map into grid points
and then use Dynamic programming based method to find
the shortest obstacle free path. This path is then used to
generate dynamically feasible minimum-time or minimum
energy trajectories, using our previously developed multi-
criteria optimization approach [2].

III. OPTIMIZATION ALGORITHM

This paper therefore extends our previous work where the
UAV was moving from point A to point B and we were using
a multi-criteria approach to optimize either journey time or
energy via using RTDP algorithm. The newly developed
RTDP path planner generates the obstacle-free shortest path.
The first straight path is selected from the generated optimum
path and cascaded algorithm as developed in [2] is then
used on the first straight path. The contribution of this
paper is a distributed control for real-time obstacle-free
energy optimized motion of multiple UAVs. The process
includes two (Dynamic programming) DP sweeps, one with
the cost function Jo as defined in section III-A, the other
one Jk discussed in [2]. The overall algorithm is based on
minimization of the cost functions defined as follows:



min
d
JPN =

k=0∑
N−1

Jo(dt, Of ) (1)

min
V

JV N =

k=0∑
N−1

Jk(Je, Jt, λ, d) (2)

To avoid repetition we will not explain the cost function
JV N , which is already explained in our previous work
in [2]. The DP algorithm requires that the system should
be described in a discrete model. We describe the system
model as follows:

Xk+1 = fk(Xk, uk, zk), k = 0, 1, 2, ...N − 1 (3)

Where Xk represents the current state of the drone,

Xk = [xk, yk] (4)

Where uk represents the next decision,

uk = [ux, uy] (5)

where ux and uy represent the next grid point in the search
space. Where zk represents obstacle matrix,

zk = [zx, zy, zr] (6)

where zx, zy and zr represent arrays containing the obstacle
x,y coordinates and the radius of the obstacle.

The first part of the cost function is calculated in first
DP sweep, as done in Fig. 1. The plane of transportation
is divided into a grid. Each point on this grid represents
a node or state. The obstacles are represented as circles.
First transition costs from each node to the other node of
consecutive states are calculated and stored. The transition
costs are calculated using the cost function defined in III-A.
After calculating all transition costs from first to last stage,
the minimum cost path is traced back to the first node. After
tracing the minimum cost path, the path is used as an input
for the algorithm as defined in [2] to obtain the optimized
velocity command.

A. Definition of cost function

The cost function is defined as a multiple of Euclidean
distance and an obstacle factor as Jo = dtȮf . Where dt =√

(xi+1 − xi)
2
+ (yi+1 − yi)

2, where i + 1 represents the
coordinates of the next state and i represents the coordinates
of the current state. Ȯf is the length of the whole journey
which allows for maximum cost for any state which lies
inside the obstacle circle. The obstacle factor penalizes the
path decision that leads into the circle defining the obstacle
region.

B. Grid size selection

The grid composition and size can effect the computational
costs and execution time. The resolution of the grid is expo-
nentially linked with the computational cost. However, the
computational costs vary linearly with number of obstacles.

The complexity of algorithm O(NsNoN
2
p ), depends on;

number of distance intervals Ns between the start and goal
position, number of grid point intervals Np and the number
of obstacles No.
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Fig. 2. The effects of a decrease in grid resolution that results in an
exponential increase in (a) number of computations with varying grid-points
and (b) computation time with varying grid-points (c) computation time with
varying number of obstacles (d) Various grid resolutions and resulting paths

Sample computation times and number of computations
were plotted in Fig. 2(a) and Fig. 2(b) for varying grid
points, which shows that the computational time increases
exponentially with the number of grid-points. The analysis
in Fig. 2(b) is based on 10 obstacles, where as number of
stages were varying with Np. The number of grid points
ranged from 10 − 40 for this analysis. The computational
time, with increasing number of obstacles was plotted in
Fig. 2(c). The number of obstacles ranged from 5-100 for
this analysis, while the grid size was fixed to [50 × 50].
Grid resolutions ranging from [10×10] to [200×200] were
applied on three obstacles and the results were plotted in
Fig. 2(d). At lower resolution the path has some intersection
with the obstacle circle, and with higher resolutions the
path is avoiding the circles properly, however with further
increasing the grid resolution does not provide any special
benefit. The computation is done using a 2.4GHz computer
with 8GB RAM.

C. Sample results

Ideally a smaller grid size favors the energy savings and
perfect obstacle avoidance. However the limitations are due
to the computational costs which can effect the real-time
application of the algorithm. Several tests were conducted



with 15 and 25 obstacles to test the DP algorithms ability
to find the least distance obstacle-free path. These tests are
shown in Fig. 3

(a) (b)

Fig. 3. Three sample DP sweep results with 50x50 grid and 20, 25
obstacles, start point is [0,0] and goal position is [15,15] (a) 15 obstacles
(b) 25 obstacles

Fig. 4. Description of the complete system for simulation tests of the
algorithm, including the controller block, the hex-rotor block, and the
optimization algorithm block, collision detection block

D. Assumptions

We assume that the location and size of the obstacles are
known to the algorithm or are updated regularly. The obstacle
circles are defined to include the drone radius, so that if
the drone passes tangentially with the circumference of the
obstacle circle, it will not create collision. Since the cascaded
DP sweeps involve the DP algorithm defined in our previous
work [2], all assumptions of that work are in place here too.

IV. NUMERICAL TESTING IN SIMULINK BASED MODEL

The algorithm is tested using the numerical model as
described in [2] The complete description of the energy
optimized obstacle avoidance RTDP algorithm can be seen in
Fig. 4. The notable difference here from [2] is the presence
of two RTDP algorithm blocks, and the collision detection
block. Assuming prior information of the obstacle locations,
and a fixed goal position [15m, 15m], several tests were
performed to verify the effectiveness of the algorithm. The
UAV model and all its parameters are defined in our previous
work [2]. An obstacle with a diameter 2m was considered
to be located at [5, 5] during the simulation tests. The factor

(a) (b)

Fig. 5. The flight plots showing the path and the obstacle and the velocity
profiles for λ = 0.5 (a) Obstacle-free path following (b) Velocity profile

(a) (b)

Fig. 6. The flight plots showing the path and the obstacle and the velocity
profiles for λ = 1 (a) Obstacle-free path following (b) Velocity profile

λ = 0, 0.5, 1 were used to select the priority between energy
or time saving during the tests. Fig. 6(a), Fig. 5(a) and
Fig. 7(a) show the results of the obstacle-free path following
of the UAV, where the circle shows the obstacle, when
λ = 0, 0.5, 1. Fig. 6(b), Fig. 5b and Fig. 7(b) show the
generated velocity profiles using the RTDP algorithm when
λ = 0, 0.5, 1.

The results obtained via numerical simulation show that by
changing a factor λ we can alter the journey time while the
UAV is continuously generating and implementing obstacle-
free path.

V. SOFTWARE IN THE LOOP TESTING

After performing the numerical simulations, the tests were
extended to software-in-the-loop simulations. Special consid-
eration was required to ensure that the publish rates of the

(a) (b)

Fig. 7. The flight plots showing the path and the obstacle and the velocity
profiles for λ = 0 (a) Obstacle-free path following (b) Velocity profile



velocity commands do not fall below the 2Hz limit so as to
not trigger the fail-safe.

Fig. 8. Description of the complete system for software in the loop
simulation tests of the algorithm

Fig. 9. Dual UAV and static obstacle SITL scenario

Fig. 10. Dual UAV and static obstacle SITL scenario

A. Multiple UAVs and static obstacles

Further simulation tests were performed, with two UAVs
flying in the same plane, such that their paths are crossed.
The complete setup of this simulation is shown in Fig. 8. The
start and goal positions of the two UAVs are [0, 0], [15, 15]
and [15, 0], [0.15]. These coordinates were chosen to make
sure we select a path which will otherwise result in collision,
if our algorithm won‘t be working. In this simulation sce-
nario, it is assumed that the UAVs are constantly sharing their
locations with each other. The Gazebo environment for this

test is shown in Fig. 9. An obstacle is placed at [7.5m, 7.5m]
with an assumed diameter of 2m. The boxes are placed at
the destination points of both drones. The resulting path of
the both drones are shown in Fig. 10. It should be noted that
although in Fig. 10 the paths of the two drones appear as
if they are overlapping at some point. However, this plot
does not show the temporal axis. Both drones may have
reached at that point, but in different times which are 6.55
and 7.45 seconds respectively. The two drones successfully
navigate around the obstacle and avoid collision with each
other during their journey.

VI. CONCLUSION

A novel real-time cascaded motion planner was presented,
where in one layer obstacle avoidance shortest path is
generated using Real-Time-Dynamic Programming whereas
in the second layer the optimum path is used to apply multi-
criteria optimization to select velocity decision to favor either
reduction of energy consumption or reduction of time spent
in the journey [2]. The algorithm is useful for deployment
in scenarios where multiple UAVs need to cooperatively
navigate in an arena while avoiding collisions. The cascaded
algorithm can be deployed in each agent, while the position
of moving UAVs or dynamic obstacles can be either detected
using on-board sensors, or transmitted via WiFi connections.
Future work should include, the cascaded path planner for
dual-UAV collaborative transport with obstacle avoidance.
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