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Abstract— One approach to multi-robot coordination is to
represent each robot as a player in a game. A system planner
designs both the incentives (utility function) for the robot and
the learning rule that specifies how the robot adapts to its
environment, namely the behaviors of other robots. In an ideal
setting, the game design can be such that a desired collective
behavior can emerge through local interactions. While such
approaches come with supporting theoretical guarantees, the
analytical setting is typically an idealization of a more realistic
environment. This paper investigates how such game theoretic
algorithms can be implemented in non-idealized settings in
order to enable application to real-time distributed multi-robot
coordination.

I. INTRODUCTION

Game theory has been used to envision interactions be-
tween strategic decision making entities. Besides its conven-
tional descriptive role, game theory has also been utilized
as a prescriptive method for the design and analysis of
multi-agent systems where the agents typically represent
programmable machines rather than humans. The main goal
in this thrust has been to design resilient networks with
desired asymptotic behaviors.

Game theory methods have been applied to several net-
work problems, including wireless communications, sensor
coverage, task assignment, and smart grids. The majority of
the past work on game theory applications formulated the
problems as myopic adjustment processes and focused on
proving theoretical guarantees for “ideal” agents with per-
fect sensing, communication, and computation capabilities.
For instance, the authors in [1], [2] studied the coverage
problem for agents that do not possess any uncertainty
in their sensing and actuation mechanisms. Accordingly,
the promising functionalities of the game theory methods
have been demonstrated on ideal application scenarios with
simulations.

Game theory methods offer significant advantages for
multi-robot applications. The learning algorithms such as
log-linear learning (LLL) and Metropolis-Hastings (MH)
algorithms are designed in such a way that each entity makes
decisions based on its knowledge about the environment.
Remarkably, this structure leads to entirely distributed algo-
rithms and can be directly encoded in robots. Furthermore,
the distributed learning algorithms are computationally effi-
cient, which is a desirable feature for small-size aerial robots
with strict requirements on the onboard hardware.

Although game theory remains a powerful tool in the
design and analysis of multi-robot systems, it poses several
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challenges when it comes to real-time implementation. When
transitioning from theory to implementation, several factors
need to be considered to take full advantage of these algo-
rithms. We list three such factors as follows.

Incomplete sensory information. Robotic sensing mecha-
nisms provide the perception of only a limited portion of the
environment through uncertain measurements. Accordingly,
a robot cannot acquire the complete sensory information
necessary for utility calculation, which entails to having
either a centralized multi-robot system or extensive data
exchange between robots.

Asynchrony. Most game theoretical learning algorithms
imply that the individual robots make decisions periodically
at specified time instants of a common clock. However,
such a synchronization may not be guaranteed in multi-robot
systems.

Sensing and actuation uncertainty. Due to their uncertain
characteristics, sensor measurements are usually represented
by probabilistic models. For instance, most commercial GPS
sensors provide position data of a drone with up to three-
meter error. Similarly, actuators execute motion commands
with uncertainty.

In this paper, we focus on the objective of aerial coverage
by multiple drones. A truly distributed multi-robot cover-
age implementation requires to utilize the robots’ onboard
capabilities solely. Therefore, we investigate whether game
theory methods are implementable on real-time multi-robot
systems which exploit their onboard capabilities solely in a
distributed manner. We propose remedies for the issues above
and analyze the performance of standard learning algorithms
in a realistic simulation environment.

Although various works have studied the coverage prob-
lem recently, the literature lacks demonstration of an entirely
distributed multi-robot coverage application. References [3],
[4] posed the coverage problem as a state-based potential
game with a utility function conditioned on the balance
between robots’ consumed energy and total covered area.
The authors in [5] considered the case of unknown sensor
locations and formulated the problem as a game. However,
none of these works addressed the implementation details
listed above. On the other hand, several multi-robot coverage
applications were performed with heuristic approaches to
find optimal routes for maximum coverage [6], [7]. The
indoor implementations in [8], [9] took full advantage of
a motion capture system from which the robots acquired
the real-time positions; however, such a positioning system
does not have an equivalent outdoors. We explore multi-
drone coverage frameworks that can operate both indoors
and outdoors.



II. PROBLEM FORMULATION

We consider the objective of covering a bounded area
by multiple drones with onboard vision capabilities. We
define the mission space as a finite set of sectors Q ⊂ R2.
Some regions in Q may include more features of inter-
est, or have higher density, than the rest of the area. Let
V (q, t) : Q × [0,∞) → R+ denote the unknown value
function representing the density of the sensory information
at location q ∈ Q at time t, satisfying

V (q, t) ≥ 0 ∀q ∈ Q,
∑
q∈Q

V (q, t) = 1. (1)

Consider also a set of N drones with positions xi ∈
R3, i ∈ {1, . . . , N} and with the following specifications:
S1. Action. The drone can move to given 3D coordinates.
S2. Computation. The drone performs all computation on

an onboard device, independent of a ground entity.
S3. Communication. The drone can transmit/receive posi-

tion data to/from other robots in its communication
neighborhood.

S4. Perception. The drone has a downward facing camera.
We assume that all drones fly at a constant altitude h, i.e.,

xi =
[
x̄>i , h

]>
where x̄i ∈ R2 is the Cartesian coordinates

of drone i. Let X =
[
x̄>1 , . . . , x̄

>
N

]> ∈ R2N , and denote the
total area perceived by the cameras at time t by C(t) ∈ R2.
We define the coverage function as

φ(X(t)) =
∑
q∈Q

f(X(t), q)V (q, t), (2)

where f(X(t), q) = 1 if q is covered by C(t) at time t and
f(X(t), q) = 0 otherwise. We define the aerial coverage
objective as follows.

Problem 1: Consider a team of N drones with specifi-
cations S1-S4. Design a motion control algorithm for the
drones so that φ(X(t)) is maximized for all t ∈ [0,∞).

III. AERIAL COVERAGE GAME

We formulate Problem 1 as a potential game, propose
distributed learning algorithms to meet the objective, and
discuss the real-time implementation issues. The design
process consists of two steps: (i) Game formulation, i.e.,
determining players, actions, and utilities; and (ii) choosing
the learning algorithm and the utility calculation method.

Let Gcov = {P,A,U} denote the distributed coverage
game with the player set P , the action set A, and the
utility set U . The drones constitute the player set P . We
set the Cartesian coordinates of a robot as its action, i.e.,
ai(t) = x̄i(t). Since a drone cannot reach any location in
Q at a given time step, we adapt the constrained action sets
introduced in [1], [2] to define A. Particularly, the action set
of a player Pi at time t is comprised of nine possible motion
primitives around its previous action ai(t − 1), defined by
the set

Si = {UL,U,UR, L, S,R,BL,B,BR} , (3)

Fig. 1: (a) A drone’s nine possible motion primitives with respect to a
global frame FG. (b) Cell partitions of a drone’s camera view. The inner
image represents the original camera view and is divided into nine partitions
(Ai). The cells shaded with dark blue (Āi) denote the “predicted image”.
The light blue region (A0) denotes the “optimism image”.

where U,B, L,R, and S denoting up, bottom, left, right,
and stay, respectively, with respect to an arbitrary coordinate
frame (Fig. 1a). In other words, a robot is allowed either to
move to its immediate neighbor locations or to stay at its
current location.

We design the utilities based on sensory information
retrieved from the drones’ onboard cameras. The utility-
based learning algorithms require calculating the utilities for
the neighbor locations corresponding to the actions in Si. A
drone is assumed to cover its bounded neighborhood with its
downward facing camera. Thus, the algorithm must “predict”
the utilities of the unseen areas which lie outside of the field-
of-view (FOV) of the robot’s camera. Accordingly, assuming
that the robots operate at a common altitude, we partition
the image retrieved from robot i’s camera into nine sub-
areas Ai (i = 1, . . . , 9) (Fig. 1b). Let the density of sub-
area Ai (i = 1, . . . , 9), calculated by a vision algorithm,
be denoted by di. Furthermore, we assume the immediate
neighbor Āi of a sub-area Ai, which robot i cannot see,
has the same density with its counterpart Ai, i.e., d̄i =
di (i = 1, . . . , 9), i 6= 5 (Fig. 1b). Finally, let dγ denote
the density of the outermost area in Fig. 1b. Although robot
i does not have any clue about dγ , the utilities for the
actions in the set Si depend on this density. Remarkably,
the design parameter dγ determines whether a robot should
be optimistic about the unseen area. Moreover, we assume
that each robot is informed with the positions of its two-hop
neighbor robots through a communication channel. With this
setup, all robots can calculate the utilities of their candidate
locations determined by the set S in a distributed manner,
addressing the first issue in Section I.

The utility-based learning algorithms require that all robots
follow a discretized time scheme. For instance, the LLL and
MH algorithms impose that, at each time step, one robot is
selected randomly and allowed to alter its action. However,
clock synchronization in real multi-robot implementations
cost additional time and effort, and a perfect synchronization
may not be guaranteed. Therefore, we propose to use Algo-



Algorithm 1 Time scheme for Pi
Require: tclock, ti, τmin, τmax

Ensure: ai
1: if tclock ≥ ti then
2: Choose ai
3: Set ti ∈ [tclock + τmin, tclock + τmax]
4: else
5: Idle
6: end if

rithm 1 as the decision time scheme where each robot uses
the time scheme of its computational unit to make decisions.

IV. RESULTS

The LLL and MH algorithms assure that if all robots obey
a specified time scheme of a common clock and calculate
their utilities correctly, the robots spend most of the operation
time in regions where φ in (2) is maximum [2]. In Section III,
our game design included Algorithm 1 and the modified
utility calculation method based on camera images. Thus,
the synchronous clock and perfect sensing conditions of the
original results are violated, and the asymptotic guarantees
of the LLL and MH algorithms are no longer valid.

To test the performance of the LLL and MH learning algo-
rithms with this modified framework, we simulated the multi-
robot coverage game Gcov in Gazebo with Robot Operating
System (ROS). The setup included four drones equipped with
downward looking cameras that operated on a flat terrain
part of which is set as the dense area (Fig. 2a). We used
the method defined in Section III to calculate the marginal
contribution utilities. Notably, the drones had separate clocks
as in real-world experiments. We used τmin = 0.5s, τmax =
1s, and dγ = {0, 1}.

Drones have highly nonlinear motion models, and their
actuation mechanisms include uncertainties. Thus, drones
cannot hover at a given coordinate perfectly, and steering
drones on a lattice structured plane was not a suitable
practice. We addressed this issue by introducing thresholds
in the Cartesian coordinates such that once a drone enters

(a) (b)

Fig. 2: (a) The drones’ paths with the MH algorithm. The dense area is
shown in blue, and the diamonds denote the initial locations of the drones;
(b) The global welfare with the MH and LLL algorithms. The maximum
achievable coverage by four drones is represented with the red dashed line.

a particular neighborhood of a commanded location, it is
commanded to stop. Although this method prevented us from
taking advantage of a lattice structured plane, we handled the
actuation uncertainties efficiently.

We observed that both the LLL and MH algorithms
performed well in simulations by steering the drones into
the dense area (Fig. 2b). For instance, the MH algorithm
test in Fig. 2a demonstrates that drones 1 and 4 reached the
dense area after exploring a part of the plane even if they did
not “see” the dense area at the beginning of the operation.

V. CONCLUSION

Game theory literature provides theoretical guarantees for
several learning algorithms applied to idealized multi-agent
systems. We have investigated whether modifications of the
standard learning algorithms can be utilized to implement
truly distributed, real-time multi-drone applications. Toward
our ultimate goal of realizing game theory algorithms in
real-time multi-drone experiments, we have tested the per-
formance of two learning algorithms on a realistic simulation
environment.
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