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Abstract— Providing accurate pose estimation over time in
various and unknown environments is a key component to
the realization of autonomous missions where an absolute
positioning system (like GPS) is not available. A lot of work
has been done in that field where Simultaneous Localization
And Mapping systems (SLAM) are still highly environment-
dependent and computationally expensive. However, a major
issue in SLAM solutions is the drift that appears in their
odometry, due to error accumulation in the successive pose
estimates. This may imply significant errors in the environment
reconstruction or mission success.

In this paper, a Nomadic and Accurate Positioning System
(NAPS), based on the collaboration of mobile robots and their
mutual sensing, is proposed. The originality and advantage
of our solution is to provide a motion capture system with
the nomadic ability. The result is environment-independent,
computationally efficient, accurate and mobile. The system
follows one or several mobile robots (explorers) and provides
accurate positioning all along their mission.

The NAPS is described as well as its moving process, and
its accuracy is confirmed through a series of experiments,
validating the whole approach.

I. INTRODUCTION

One of the major issues in UAVs (Unmanned Autonomous
Vehicles) is to obtain and maintain very accurate localization
and orientation, especially for indoor contexts. Such informa-
tion is essential in many tasks, either to ensure the success of
the task (actions), the validity of the results (measurements),
or to avoid costly post-processing phases of acquired data.

In common approaches of SLAM (Simultaneous Local-
ization And Mapping), both a map/representation of the
environment along with the relative poses of one or several
UAVs in that environment are regularly updated, in real-time
when possible. However, those approaches suffer from two
major issues: the pose estimates accuracy and the drift in the
estimates along the path followed by the UAV.

Errors in pose estimation are directly related to the sensors
that are embedded in the UAV to be tracked. In most
cases, there is an IMU (Inertial Measurement Unit) that
provides gravity and acceleration information. Also, cameras
are often used to complete the positioning system. However,
IMUs can only provide relative information and are prone to
errors, and the cameras require expensive image processing
to find elements (landmarks) that allow a better position
estimate. Moreover, cameras are environment dependent as
they require luminosity and clear atmosphere.

The way to integrate measurements and uncertainties often
use Bayesian approaches to maintain correct estimates of the
robot pose and environment map. However, such solutions
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are not sufficient to avoid the drift and its accumulation that
occur along the path of the tracked UAV.

In fact, the positioning problem in classical SLAM solu-
tions mainly comes from the fact that the exploring UAV
tries to evaluate its own position from its embedded sensors.
Yet, the best technique to obtain very accurate position
measurements is the one used by the land surveyors, with
external and still sensors. In our case, the principle is to
use a small set of additional UAVs (beacons) with specific
sensors allowing them to track each others. When tracking
the UAVs of interest (mission UAVs), the beacons stay
immobile. Otherwise, they move to the next place of interest.

In this paper, we propose to take advantage of such a
solution by designing and implementing an external tracking
system that has the ability to be nomadic. This solution is
called NAPS: Nomadic and Accurate Positioning System.

In the next section, a brief overview of works related to
pose estimation is provided. Then, in Section III is fully
described the NAPS concept as well as its implementation
aspects. Experimental validation is given in Section IV,
demonstrating the interest of NAPS.

II. RELATED WORKS

To the best of our knowledge, the originality of NAPS
leads to a lack of similar studies in the literature. However,
the proposed objectives and use cases are similar to the
Simultaneous Localization and Mapping (SLAM) problem.
According to [1], SLAM is not solved yet, despite the exten-
sive research in the field, as long as the robustness and the
environment dependence problems (lightning, structure,...)
are not addressed. Modern formulations of SLAM are often
broken down into two parts : front-end and back-end. The
front-end produces estimations from sensors data while the
back-end merges and refines those estimations, often a pos-
teriori. In this paper, we consider our contribution and the
other odometry solutions in the front-end category, although
boundaries between front and back-end are sometimes fuzzy.

A. Back-end

The way to deal with uncertainty in measurement and
sensor combination in robotics has received much attention,
and Bayesian solutions like Kalman filtering [2] are widely
used as part of current SLAM solutions. Furthermore, some
state of the art libraries are available, providing optimal
solutions formalized as factor graphs computing maximum
a-posteriori estimations [3], [4].

The drift and poor estimates can be partially corrected
either by loop closure (or visual place recognition [5]) or by
offline optimization tools/frameworks [6] at the expense of
high computation cost.



B. Front-end

In robotics, multiple and heterogeneous sensors are com-
monly used. By providing very dense geometric data, namely
point-clouds, the Lidar allowed some valuable results [7].
Nevertheless, as stated in [8], despite the extensive use of
Iterative Closest Point (ICP) and point-cloud registration in
general, a consequent work is dedicated to choose, organize
and tune different parts of existing software to make it work
in a particular context. Research works based on Lidars have
lost popularity in recent years, probably with an exception
in the field of autonomous vehicles that often operate in a
different context, i.e., in more controlled environments.

The trend is currently on the side of cameras. Indeed, they
are quite cheap and easy to embed, even in small UAVs.
Some work has been done with RGB-Depth cameras [9], but
most of the research on UAVs odometry is now dedicated to
visual-inertial odometry. By merging camera and IMU data,
those approaches yield promising results [10], [11]. However,
these algorithms are still computationally expensive and
environmentally dependent as they require a significant and
constant illumination, as well as sufficiently discriminating
textures in the environment. Also, the tracking frequency of
those techniques (≈20Hz) does not always allow to get an
accurate tracking of rapid moves that often occur with UAVs,
especially the flying ones.

C. Performance Evaluation

Performance evaluation and benchmarking is complex and
not often done in SLAM field due to closed-source imple-
mentations of many algorithms as well as a lack of common
datasets. Fortunately, this is not the case for visual-inertial
odometry, where several datasets [12], [13] and even bench-
marking tools [14], [15] are available. Also, some works take
into account computational cost to strengthen quantitative
comparisons between algorithms [11]. In Section IV, these
tools are extensively used to get a fair evaluation of NAPS.

III. NAPS POSITIONING SYSTEM

As mentioned in the introduction, there are two major
problems with mobile positioning systems used in SLAM.
The former is the tracking accuracy that is generally limited
and the latter is the drift that occurs during the moves of
the explorer. Moreover, such systems often require a large
amount of computation to update the explorer position (often
based on acquired environment data).

In this context, we propose an original system that com-
bines the accuracy of static positioning systems (used by
land surveyors or for motion-capture) with the mobility of
collaborative UAVs.

The interest of the NAPS approach is to preserve a
very accurate positioning of the explorer with very few
computations that can be made on-board. Moreover, NAPS
is much less environment dependent than existing systems as
it does not rely on any specific hypothesis over its features
(structure, textures properties, light,...).

A. Concept

As mentioned above, NAPS is inspired by the techniques
used by the land surveyors who manually place artificial
beacons in the environment.

The main concept of NAPS is to use a small set of
additional UAVs that forms a positioning system for the
explorer. In this system, those UAVs are used as reference
beacons that are themselves accurately localized in the initial
map. Then, the relative position of the explorer with respect
to the beacons is used to accurately deduce its global map
position in real-time. At each time, one element is used as
the reference position and all other elements are localized
relatively to this reference.

The only constraint to build the NAPS is to have some
sensors that allow to evaluate relative positions between
elements. As the hardware implementation of our prototype
is described in the next subsection, we assume here that each
element can get its relative position with respect to any other
element in the system.

Let’s describe how the system operates. At the initializa-
tion of the system, the beacons are disposed to form an area
of a few meters diameter (depending on the sensors range).
Then, one of them is set as reference and its position and
orientation in the global map is computed. All other elements
are localized with respect to that reference thanks to the
sensors. According to those local positions, they can be ac-
curately localized in the map by the following computation:
let’s denote MTR the position/orientation (pose) matrix (4×4
homogeneous transform matrix) of the reference in the map,
LTR the measured relative pose matrix of the reference in
the local coordinate system, and LTD the measured relative
pose matrix of any other device in the local system. Then,
the global pose matrix MTD of that device in the map can
be deduced by:

MTD =M TR.
LT−1

R .LTD (1)

as depicted in Figure 1.
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Fig. 1: Global pose deduction from local and reference poses.

So, at this point, the explorer can move inside the geomet-
ric volume described by the beacons. Its relative position can
be accurately updated in real-time by Equation 1. This is the
phase 1 of the NAPS process. It is worth noticing that when
the explorer moves, it is located by a static system, so no
additional error is induced. Moreover, it would be possible
to use and track several explorers within the beacons area.

Once the explorer has scanned the area, it stops (saving
its energy) and one (or several) of the UAVs is set as
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Fig. 2: NAPS process: explorer in action tracked by the beacons (left and right), beacons moving to another area (center).
The dashed rectangle (not used in the process) represents the same part of environment. It is drawn to help the understanding.

the new reference (it can be an explorer). Then, all other
elements can move to other positions in order to change the
exploration area. Once they have moved, their relative and
global poses are computed thanks to the current reference.
This is the phase 2 of NAPS. Once this is done, the explorer
can begin to scan the new area (phase 1). This process,
depicted in Figure 2, can be repeated as many times as
needed to cover the zone to be explored. Here again, it is
worth mentioning that positioning error evolves only when
the set of beacons moves. Hence, the position accuracy of
the explorer stays stable during its scans. Moreover, the
accuracy loss that occurs when moving the beacons may
be reduced by limiting the number of beacons that move at
the same time. In fact, if one beacon is moved at a time,
the error made in the evaluation of its new position should
be smaller than when using only one reference beacon. The
choice of the number of moving beacons at each step of
the process directly depends on the accuracy and range of
the sensors used to measure the relative positions. Thus,
with very accurate and wide-range sensors, only one beacon
may be used as reference while the others move, as in
Figure 2. Also, whatever the number of beacons are moved,
the accuracy loss can be restrained by a temporal integration
of real-time measures. The idea is to compute the average
of a set of measures obtained within a temporal window
(typically 1s). Such integration is pertinent for the beacons
at the end of phase 2 since they do not move during phase 1.

As can be seen, the major difference with classical land
surveyor systems is that our beacons are mobile. Also,
compared to SLAM techniques, our beacons play the same
role as detected features (landmarks) in the environment,
both drastically reducing measurement errors and eliminating
the possibility of errors in data associations that are required
in SLAM, but not in NAPS.

The counterpart of those advantages is that NAPS makes
use of several beacons (at least two to provide accuracy and
nomadism), which means additional UAVs (at least one if
the explorer plays also the role of a beacon). However, those
UAVs need only to carry the positioning sensors. So, they
can be relatively small and simple, contrary to the explorer
that may embed many sensors of different kinds, or even
actuators, to fulfill its mission.

B. Implementation

In order to demonstrate the validity and interest of the
NAPS approach, we have implemented a prototype system.

As NAPS requires additional UAVs as beacons (at least
one), their price may condition the choices of UAV models
and sensors to be used. This may affect the final accuracy
of the system as well as its autonomy. Indeed, this is just
a trade-off between cost and performance. However, a more
fundamental constraint that must be taken into account is
the embedding ability of the sensors. As our prototype is
a proof of concept, that aspect was not a priority, although
the hardware we have used can be technically embedded
on UAVs with electric power adaptations. A last constraint
that is mandatory for building the NAPS is the ability of the
hardware to get unique identifiers for all the devices, in order
to distinguish the UAVs.

According to all those requirements, we have chosen
the Vive Pro tracking system [16] as it provides accurate
measures (an evaluation is provided in Section IV) and
the cost of the elements (trackers and lighthouses) is quite
limited. This system is based on one or two lighthouses that
emit lasers, and on trackers that receive the lasers on different
small sensors, allowing for the computation of their relative
pose according to a local system. Indeed, the system provides
a transforms tree of all connected objects in real-time.

In our context, the major issue encountered with this
system is that it is designed for static use-cases (virtual
reality experience in a static area), i.e., the lighthouses are
used as static references, and only the trackers are meant to
move. So, we developed additional software in order to add
the ability to move the lighthouses. In fact, the Vive API does
not include any lighthouses recalibration on the fly, so the
measures are no longer valid when moving one of them. As
a consequence, we implemented a software environment that
allowed us to recalibrate the system after each move of the
lighthouses beacons. Obviously, for release versions of the
system, such problem would be considered at the design level
so that moving any beacon would not require such additional
recalibration step.

Finally, we obtain a prototype that allows us to experi-
mentally validate the NAPS approach.



IV. EXPERIMENTS

The particularity of NAPS, namely the use of other sensors
than cameras and IMUs, prevented the use of datasets
commonly referenced by the community. Therefore, some
datasets have been specifically built, keeping in mind that
accurate ground-truth acquisition is a key determinant for
the validation of the approach. In this context, we have used
a motion capture system composed of 8 Optitrack Prime
17w infrared cameras providing a 6DOF tracking at 250 Hz
in a 5×4×3 meters capturing volume with a sub-millimeter
accuracy on pose estimation (calibration feedback). Another
constraint has been the limited number of devices at our dis-
posal (2 lighthouses and 3 trackers). It is worth mentioning
that the motion capture system illuminates the whole area
with infrared light. This can disturb the VIVE tracking system
which is based also on infrared communication between
devices. However, although this setup may disadvantage
NAPS a little by reducing its accuracy, preliminary tests have
shown that such perturbations were not significant enough to
invalidate the experiments.

A. Protocols

To demonstrate the validity of our approach, two distinct
experimental protocols have been designed. Both of them use
our moving process in two phases, described in Section III,
alternating between explorer(s) tracking and beacons reposi-
tioning. Also, they are both designed according to the lim-
ited ground-truth (Optitrack) acquiring area at our disposal
(covering ≈ 20m2 while one lighthouse covers ≈ 30m2).
Due to that limitation, almost all beacons where located
out of the ground-truth area, preventing us from getting
that information for all devices. This explains why we only
evaluate one trajectory (that could be the explorer’s one).
Indeed, comparing only the explorer position estimates is
sufficient to validate our system as any error on the beacons
positions would imply an error on the explorer.

As our implementation of NAPS uses the Robot Operating
System (ROS), pose estimates are computed and published
on topics for all beacons and explorers at a 150 Hz rate.
In addition, a ROS node writes the ground-truth and pose
estimates immediately upon their publication. Also, after
each move of the beacons, their positions are updated with
a temporal integration of 1s, i.e., around 150 measurements
to obtain one estimate.

a) Random move: The objective of the first protocol
is to cover the transition phases of an exploration process,
namely the local repositioning (translations and rotations) of
the system. In the first phase, the explorer moves freely in
the area formed by the NAPS beacons in order to fulfill its
mission, then it lands anywhere in that area. In the second
phase, all the beacons are randomly re-arranged in the same
area. It is important to notice that all beacons are moved,
effectively adding estimations errors to the system.

In the context of this experiment, the explorer is used
as the reference and all the beacons move to form a new
tracking area. However, the use of the explorer as reference
is only a practical choice but it does not induce any loss of

generality of the approach since all the UAVs in the system
are tracked with the same accuracy.

The results of that experiment are labeled RMi. For each
experiment, the raw concatenation (no post-treatment) of
the consecutive steps (phases 1 and 2) provides time-stamped
trajectories of one UAV (the explorer) for both ground-truth
and NAPS pose estimates.

b) Guided move: This second protocol is designed to
reproduce a complete guided exploration process, i.e. moving
the system in a specific direction. The mechanism is quite the
same, except that instead of moving randomly, the beacons
are moved to a neighboring area, in a given direction. In order
to preserve the accuracy of the system when the beacons
move to another area, the explorer must land near the border
of the current area that is common to the aimed area. Then,
the second phase can begin.

This iterative process is repeated several times in order to
evaluate the error accumulation along a realistic path length
(several tens of meters) requiring several tracking areas.
Those experiments are labeled GMi in the following.

B. Results

In order to compare our results with state of the art (visual-
inertial) odometry, we need to use the same metrics. What
we need to quantify is the error between the ground-truth
trajectory and the trajectory estimated by NAPS. In Table I
are gathered the general features of the datasets collected
during our experiments: 4 random moves (RM) and 4 guided
moves (GM). Also, a high-speed test (HST) is added, in
which the robustness of NAPS to fast moves of the explorer
(above classical use) is tested. The differences between the
number of ground-truth poses and the number of NAPS poses
come from different acquisition frequencies.

Length (m) NAPS Ground-truth NAPS
moves poses poses

RM1 40 2 45k 22k
RM2 50 3 46k 28k
RM3 53 2 27k 17k
RM4 52 2 27k 17k
GM1 51 1 26k 16k
GM2 74 4 65k 32k
GM3 40 2 33k 8k
GM4 176 9 125k 50k
HST 117 2 22k 10k

TABLE I: Datasets collected during the experiments: total trajec-
tory length, number of NAPS moves and number of recorded poses
for both ground-truth and NAPS.

The open Toolbox for trajectory evaluation [15] provided
by the University of Zurich and ETH Zurich Robotics and
Perception Group has been used to compute translation
and orientation root mean square errors (RMSE) along the
complete trajectories, as well as to produce KITTI style
analysis [14], giving the errors for different segment lengths
along the trajectories.

a) Raw data: As a first accuracy overview, the over-
lapped trajectories measured by Optitrack and NAPS are
given in Figure 3 and 4, respectively for a random move

http://www.ros.org
http://www.ros.org
https://github.com/uzh-rpg/rpg_trajectory_evaluation
http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch


experiment and for a guided move one. As the trajectories are
initially expressed in different coordinate systems (Optitrack
and Vive), the alignment toolbox (sim3 type) has been used
to obtain the overlaps. As can be seen, Optitrack and NAPS
trajectories are pretty close to each other in both cases.
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Fig. 3: Trajectory from the RM2 experiment (top view)
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In order to get a closer look to the accuracy of our
system, translation and orientation errors of the NAPS pose
estimations in the GM2 experiment are plotted in Figure 5,
for all dimensions or axes. Other experiments obtain similar
plots, but in GM2, there is a translation error peak is visible
in step 0 for one x value. Indeed, this corresponds to a
temporary loss of sight between explorer and beacons during
manual testing. However, such problem can be avoided by
moving algorithms ensuring line of sight. All other measures
are coherent and stay in an error interval around [-40:30] mm.
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Fig. 5: Pose estimation errors over the whole GM2 exper-
iment. Each vertical separation corresponds to a transition
phase in which all beacons are moved (phase 2 of NAPS).

b) Absolute error: The Root Mean Square Error metric
is often used for trajectory error analysis. It offers the benefit
to summarize the errors on the whole trajectory with only
one value. In Table II are presented the RMSE obtained in
our experiments. As already mentioned, a direct comparison
of our results with those obtained by other algorithms is
quite difficult as the datasets are different. However, the
results presented in several odometry benchmarks [13], [11]
suggest a higher order of the RMSE metrics. For instance,
the best results reported in [11] are 0.03 m for a specific
dataset whereas it is the maximal RMSE value observed for
NAPS, with the longest trajectory (176 m).

RM1 RM2 RM3 RM4 GM1 GM2 GM3 GM4 EST

Trans. (m) 0.011 0.010 0.016 0.015 0.011 0.011 0.010 0.031 0.014
Ori. (deg) 1.288 0.936 1.090 0.894 0.973 0.939 1.492 1.669 1.824

TABLE II: Translation and orientation RMSEs for NAPS.

c) Relative Error: Another common approach for tra-
jectory analysis is the KITTI style analysis [15]. Its principle
is to split the whole trajectory into sections of given lengths,
to align the couples of ground-truth and estimate values for
each section, and finally to compute the relative error for each
section. This technique has been used to produce Figure 6,
in which the relative error distributions in translation and
yaw are depicted for several section lengths along every
trajectories obtained in our entire set of experiments. It can
be seen that NAPS median errors are 29 mm and 0.5 ◦ for
a 35 m section length. As a comparison, the best results
reported in the literature [11] are obtained by the vinsmonolc
method [10], with a median translation error of 150 mm the
same path length. Although the datasets are not the same,
the diversity, complexity and generality of our experiments
make them representative of general use-cases.

So, we can conclude that according to the limited envi-
ronment dependency of our NAPS prototype, its high quality
sensors for pose measurements and its update rate of 150 Hz



allowing time integration, similar results should be obtained
in most real-case contexts. One of our future works will
consist in testing our prototype in the real context of a mine.
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V. CONCLUSION

A nomadic and accurate positioning system (NAPS) has
been presented. Its originality is to combine advantages of
static localization systems with mobility provided by UAVs.
Indeed, the system is composed of two sets of UAVs. One
set contains positioning beacons and the other set contains
one or more explorers.

The interest and validity of the system has been practically
demonstrated by a series of experiments, showing the very
good accuracy of pose estimates of any of the elements
(beacons and explorers). The NAPS positioning errors stay in
the order of the centimeter along quite long paths (<45 mm
for 175 m), which is much smaller that existing solutions.

Although the NAPS results are very promising, several
tracks for further works can be identified. In particular, our
experiments have pointed out that the way the beacons are
moved may have an impact over the overall accuracy. So,
we plan to study different strategies for moving the beacons
in order to preserve accuracy while optimizing the energy
consumption of all elements. Also, the number of beacons
is an important parameter. A minimum of two beacons is
necessary. In an extreme case, only one beacon may be
required if the explorer plays also the role of a beacon.
However, such reduction of the number of beacons would in-
duce significant constraints over the consecutive moves of the
system, probably implying more steps in the moving process.
This issue deserves a specific study in itself. Another work
of interest will be to test the behavior of NAPS in different
environmental conditions (smoky/dusty air,...). Finally, we
would like to enhance our current hardware prototype by

embedding the lighthouses on UAVs. This will make our
system fully autonomous and will allow us to conduct real-
case explorations with additional sensors (Lidar,...) for full
3D reconstructions.

ACKNOWLEDGMENT

This work was supported by the Interreg V - Grone -
Project 024-4-09-076 of the European Union and the Region
GrandEst. The experiments presented in the paper have been
done in the Creativ’Lab at Loria.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, dec 2016.

[2] S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Transac-
tions on Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, 2012.

[3] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in Proceedings
- IEEE International Conference on Robotics and Automation, 2011,
pp. 3607–3613.

[4] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “ISAM2: Incremental smoothing and mapping using the
Bayes tree,” International Journal of Robotics Research, vol. 31, no. 2,
pp. 216–235, 2012.

[5] S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual Place Recognition: A Survey,” IEEE
Transactions on Robotics, vol. 32, no. 1, pp. 1–19, feb 2016.

[6] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschen-
ski, and R. Siegwart, “maplab: An Open Framework for Research
in Visual-inertial Mapping and Localization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1418–1425, 2017.

[7] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in
Real-time,” Robotics: Science and Systems X, 2014.

[8] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud
Registration Algorithms for Mobile Robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[9] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for
RGB-D cameras,” in Proceedings - IEEE International Conference on
Robotics and Automation, 2013, pp. 3748–3754.

[10] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1–14, 2018.

[11] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of
Monocular Visual-Inertial Odometry Algorithms for Flying Robots,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, may 2018, pp. 2502–2509.

[12] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–
1163, 2016.

[13] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stuckler, and
D. Cremers, “The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry,” IEEE International Conference on Intelligent Robots and
Systems, pp. 1680–1687, 2018.

[14] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 3354–3361, 2012.

[15] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
oct 2018, pp. 7244–7251.

[16] D. C. Niehorster, L. Li, and M. Lappe, “The accuracy and precision
of position and orientation tracking in the HTC vive virtual reality
system for scientific research,” i-Perception, vol. 8, no. 3, pp. 1–23,
jun 2017.

http://interreg-grone.eu/en/about-2
http://interreg-grone.eu/en/about-2
http://creativlab.loria.fr/en

	Introduction
	Related works
	Back-end
	Front-end
	Performance Evaluation

	NAPS positioning system
	Concept
	Implementation

	Experiments
	Protocols
	Results

	Conclusion
	References

