
AirCap – Aerial Outdoor Motion Capture

Aamir Ahmad1, Eric Price1, Rahul Tallamraju1,2, Nitin Saini1, Guilherme Lawless3, Roman Ludwig1,
Igor Martinovic1, Heinrich H. Bülthoff4 and Michael J. Black1

Abstract— This paper presents an overview of the Grassroots
project Aerial Outdoor Motion Capture (AirCap) running at
the Max Planck Institute for Intelligent Systems. AirCap’s
goal is to achieve markerless, unconstrained, human motion
capture (mocap) in unknown and unstructured outdoor en-
vironments. To that end, we have developed an autonomous
flying motion capture system using a team of aerial vehicles
(MAVs) with only on-board, monocular RGB cameras. We
have conducted several real robot experiments involving up
to 3 aerial vehicles autonomously tracking and following a
person in several challenging scenarios using our approach of
active cooperative perception developed in AirCap. Using the
images captured by these robots during the experiments, we
have demonstrated a successful offline body pose and shape
estimation with sufficiently high accuracy. Overall, we have
demonstrated the first fully autonomous flying motion capture
system involving multiple robots for outdoor scenarios.

I. INTRODUCTION

Human pose and shape estimation, or motion capture
(mocap), in outdoor, unstructured environments is a highly
relevant and challenging problem. Its wide range of appli-
cations include search and rescue [1], coordinating outdoor
sports events [2] and facilitating animal conservation efforts
in the wild [3]. In indoor settings, similar applications usually
make use of body-mounted sensors, artificial markers and
static cameras. While such markers might still be usable
in outdoor scenarios, dynamic ambient lighting conditions
and the impossibility of having environment-fixed cameras
make the overall problem difficult. On the other hand,
body-mounted sensors are not suitable for some kinds of
subjects (e.g., animals in the wild or large crowds of people).
Therefore, to address all of these issues, our solution involves
a team of micro aerial vehicles (MAVs), tracking subjects by
using only on-board monocular cameras and computational
units, without any subject-fixed sensor or marker.

Our method consists of a robotic front-end and an
optimization-based back-end. The front-end consists of a
team of micro aerial vehicles (MAVs), autonomously de-
tecting, tracking and following a person. It is responsible
for the online task, which is to continuously estimate the
3D global position of the person and keep him/her centered
in the field of view of their on-board camera, while he/she
performs activities such as walking, running, jumping, etc.
The back-end performs the offline task of human pose and
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Fig. 1: 3D markerless motion capture from fully autonomous micro aerial vehicles
(MAVs) with on-board cameras. Multi-exposure image shows the trajectory of the
MAVs and the 3D body pose and shape projected onto an image frame from an external
camera.

shape estimation using only the acquired RGB images and
the MAV’s self-localization poses (the camera extrinsics).

II. AIRCAP SYSTEM OVERVIEW

Fig. 2 shows the overview of our mocap system. Step 1 in
Fig. 2 depicts the robotic font-end which is used to acquire
images and save them on-board during a mocap session.
Fig. 1 shows one such mocap session using our front-end.
Step 2–4 in Fig. 2 form the back-end which is responsible for
offline pose and shape estimation using the acquired images.

A. Front-end: Online Data Acquisition

1) System: Fig. 1 shows our MAV-based mocap front-
end tracking and following a person. It consists of a team of
self-designed 8-rotor MAVs (see in Step 3 in Fig. 2 inset).
Each MAV is equipped with a 2MP HD camera, a computer
with an Intel i7 processor, an NVIDIA Jetson TX1 embedded
GPU and an OpenPilot Revolution flight controller board.
We use the flight controller’s position and yaw controller
as well as its GPS and IMU-based self-pose (position and
orientation) estimation functionalities.

2) Detection and Tracking: In order to detect and coop-
eratively track the person, we use the approach developed
in our previous work [4]. Each copter runs a single shot
detector (SSD) multibox on the images acquired by its own
camera using its on-board GPU to detect the person’s outer
bounding box on the image frames. A detection rate of ∼4
Hz is achieved during the online acquisition. The MAVs
then share the person’s 2D image bounding box positions
and their own 3D self-pose estimates wirelessly between
each other. Subsequently, using a cooperative detection and
tracking (CDT) filter that runs on-board each MAV’s CPU,
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Fig. 2: AirCap System Overview. Step 1 is the online phase while Step 2–4 are parts of the offline phase, as described in the text previously.

they estimate the 3D position of the person’s center of mass
in a consistent world frame (GPS-frame). Using this method,
the MAVs also improve their own 3D self-pose localization.
One key feature of the CDT filter is that it allows the detector
to focus on the most informative region of image (ROI)
on future image frames, thereby making it computationally
efficient. Note that even though the detections are obtained at
∼4 Hz, the CDT filter runs at ∼30 Hz, alternating between
the standard prediction and update steps, except that the
updates happen at a lower frequency.

3) Navigation and Formation Control: In order to con-
tinuously keep the person in the camera FOV of all MAVs,
they need to follow him or her. To this end, we developed
an active perception-driven MPC-based formation controller
[5]. An instance of this controller runs on each MAV to
generate waypoints for its own navigation such that it ac-
tively minimizes the joint uncertainty in the tracked person’s
3D position estimate obtained from CDT (described in the
previous sub-section). We formulate it as a locally convex
MPC. We do so by decoupling joint uncertainty minimization
into i) a convex quadratic objective that maintains a threshold
distance to the tracked person, and ii) constraints that enforce
angular configurations of the MAVs with respect to (w.r.t.)
the person. We derive this decoupling based on Gaussian ob-
servation model assumptions used within the CDT algorithm.
To guarantee the safety of the motion plans, we incorporate
collision avoidance constraints w.r.t. i) other MAVs, ii) the
tracked person and iii) static obstacles, only as locally convex
constraints. Collision avoidance and angular configuration
constraints are inherently non-convex. We preserve convexity
in our MPC formulation by converting them to external
control input terms embedded inside the MPC dynamics,
which are explicitly computed at every iteration of the MPC.

B. Back-end: Offline Pose and Shape Estimation

1) 2D region of interest and MAV offline self pose refine-
ment: In this step, we run the CDT algorithm [4] offline
to improve the subject’s tracked position estimate and each
MAV’s self pose estimates. SSD Multibox detector is able to
run on every frame in Step 2. The CDT filter leverage these
every-frame observations to obtain the ROIs for every image
and improve the MAV self pose estimates.

2) Offline Pose and Shape Estimation: Our approach to
this step [6] relies on 2D joint detections in each camera.
Current methods like AlphaPose [7] and OpenPose [8] are
quite accurate even with aerial imagery. To fuse these 2D

detections into a 3D pose estimate, we formulate an objective
function in which we simultaneously solve for body shape,
3D pose, and 3D camera positions. Pose is represented by
relative joint rotations of body parts in a kinematic tree.
Specifically, we use the 3D SMPL body model [9] to fuse the
noisy estimates. SMPL captures the shape of the human body
and this constrains the possible solutions. We project the
joints of SMPL onto each of the images (using the estimated
camera parameters) and compute the error (robustly) between
the predictions and the observed 2D detections. Since the
2D pose detections may be noisy, we regularize the 3D
fitting with a learned pose prior called Vposer [10]. Vposer
is learned from SMPL fits to hours of motion capture data
using a variational auto-encoder (VAE). We solve for camera
parameters jointly and constrain them to be similar to those
estimated by the MAVs. Further details of our approach are
presented in [6].

3) Ground Truth Comparison: We obtain ground truth
data to evaluate our reconstructions from two different
systems, i) a commercially available IMU MoCap system
(Xsens) [11] and ii) a pair of differential GPS modules.
IMU system is used to obtain ground truth (GT) data for
body pose relative to the root joint. For ground truth SMPL
parameters, we use a state of the art IMU MoCap method
Sparse Inertial Poser (SIP) [12]. It uses the raw data from
Xsens and gives SMPL paramters. However, the global root
joint position and orientation from SIP is not reliable for GT
comparison. To solve this issue, we use a pair of differential
GPS modules, each one attached to a shoulder of the subject
to get the position of root joint in global coordinate system.
GT of global root orientation still remains unknown as it is
not directly measurable with these two GT systems.

III. RESULTS AND DEMONSTRATION

Figure 4 shows multi-exposure images from 4 mocap
experiments. Fig. 4(a) showcases the results based on our
previous work [4]. Notice that the MAVs are close to the
target person and never uniformly spread around the person’s
position. Fig. 4(b) shows the results based on our previous
work [13]. Notice that the MAVs 2 and 3 are quite close
to each other and the resulting formation is non-optimal for
uncertainty minimization. In Fig. 4(c), (d) and the image
in Fig. 1 the results of our latest approach [5] are shown.
Notice that the MAVs are almost uniformly spread around
the person’s position and maintain an angular configuration
with a difference of approx. 2π

3 w.r.t. each other. Moreover,



Fig. 3: Pose and shape estimation results of our approach overlaid on some of the image sequences from one of the MAV’s camera. (Left) A walking sequence. (Right) A
sequence with arbitrary hand and leg movement.

Fig. 4: Multi-exposure images of short sequences from different mocap experiments.

the MAVs successfully maintain the desired safe distance
and altitude from the person. We refer the reader to [5] for
complete description of experimental setup and results

In Fig. 3 we present qualitative results of our mocap
back-end, the offline pose and shape estimation method [6].
The estimated SMPL body pose and shapes are overlaid
on images obtained from the online data collection step. It
showcases i) a walking sequence where the human subject is
randomly walking in different directions and ii) a sequence
where the human subject is performing arbitrary hand and leg
movements while standing or jumping in the same location.
In [6], a quantitative comparison with ground truth (GT)
motion capture of the person is also presented. For GT, an
IMU and differential GPS-based body suit was used.

In [5] and [6] further experimental results are presented.
They include various ablation studies, comparisons on how
multiple robots improve pose and shape estimates, etc.

IV. CONCLUSION AND FUTURE WORK

We presented the first successful demonstration of full-
body markerless motion capture from autonomous flying
vehicles. AirCap addresses the challenges of i) online image
data acquisition of a tracked human subject by multiple
fully autonomous MAVs, and ii) human body pose and
shape estimation using the acquired image dataset. Our first
contribution consisted of a cooperative detection and tracking
algorithm that actively selects image regions of interests such
that CNN-based detectors can run on-board and in realtime
on our flying robots. We then introduced a decentralized
convex MPC-based algorithm for the MAVs to actively track
and follow a moving person in outdoor environments and
in the presence of static and dynamic obstacles. Finally,
we show how we leverage state-of-the-art 2D human joint

detection methods as noisy sensors and fuse them to obtain
consistent 3D estimates of human pose and shape. One
of the most important advantages of our method is that it
completely removes the need for a subject preparation step,
therefore, allowing in-the-wild motion capture of any type of
subject. Extending our method to larger and complex outdoor
scenarios as well as to multiple human and animal subjects
are our next steps.
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